Compressive sensing of ECG signals using plug-and-play regularization
نویسندگان
چکیده
Compressive Sensing (CS) has recently attracted attention for ECG data compression. In CS, an signal is projected onto a small set of random vectors. Recovering the original from such compressed measurements remains challenging problem. Traditional recovery methods are based on solving regularized minimization problem, where sparsity-promoting prior used. this paper, we propose alternative iterative algorithm Plug-and-Play (PnP) method, which become popular imaging problems. PnP, powerful denoiser used to implicitly perform regularization, instead using hand-crafted regularizers; been found be more successful than traditional methods. work, use PnP version Proximal Gradient Descent (PGD) recovery. To ensure mathematical convergence algorithm, in question needs satisfy some technical conditions. We high-quality fulfilling condition by learning Bayesian small-sized patches. This guarantees that proposed converges fixed point irrespective initialization. Importantly, through extensive experiments, show reconstruction quality method superior state-of-the-art
منابع مشابه
On ECG reconstruction using weighted-compressive sensing.
The potential of the new weighted-compressive sensing approach for efficient reconstruction of electrocardiograph (ECG) signals is investigated. This is motivated by the observation that ECG signals are hugely sparse in the frequency domain and the sparsity changes slowly over time. The underlying idea of this approach is to extract an estimated probability model for the signal of interest, and...
متن کاملRegularization—The Compressive Sensing Approach
Synthetic aperture radar (SAR) tomography (TomoSAR) extends the synthetic aperture principle into the elevation direction for 3-D imaging. The resolution in the elevation direction depends on the size of the elevation aperture, i.e., on the spread of orbit tracks. Since the orbits of modern meterresolution spaceborne SAR systems, like TerraSAR-X, are tightly controlled, the tomographic elevatio...
متن کاملl1,1/2 Regularization for Compressive Sensing
Recently, the design of group sparse regularization has drawn much attentions in group sparse signal recovery problem. Two of the most popular group sparsity inducing regularization are the l1,2 and l1,∞ regularization, defined as the sum of l2 and l∞ norms respectively. Nevertheless, they may fail to simultaneously consider the intra-group and intergroup sparsity characteristic of the signal. ...
متن کاملکنترل توان منابع تولید پراکنده با قابلیت plug and play
در دو دهه گذشته، مسائلی مانند گرمایش زمین و آلودگی هوا و از طرف دیگر افزایش تقاضا برای انرژی برق، دست اندرکاران و تصمیم گیرندگان صنعت برق را براین داشته که به سوی تولید انرژی برق از منابع انرژی تجدید پذیر مانند انرژی خورشیدی، بادی و همچنین تکنولوژی های جدیدتر مانند پیل های سوختی گام بردارند. در این پایان نامه کنترل توان منابع تولید پراکنده مورد بررسی قرار گرفته است. کنترل توان پیل سوختی متصل به...
Compressive Sensing of Analog Signals Using Discrete Prolate Spheroidal Sequences
Compressive sensing (CS) has recently emerged as a framework for efficiently capturing signals that are sparse or compressible in an appropriate basis. While often motivated as an alternative to Nyquist-rate sampling, there remains a gap between the discrete, finite-dimensional CS framework and the problem of acquiring a continuous-time signal. In this paper, we attempt to bridge this gap by ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Signal Processing
سال: 2023
ISSN: ['0165-1684', '1872-7557']
DOI: https://doi.org/10.1016/j.sigpro.2022.108738